Sketch of a cost-benefit analysis of GGIS-DRR

Sean Brocklebank

University of Edinburgh

2014 - 05 - 01 — EGU Vienna

CBA of GGIS-DRR

- Is the Global Geohazards Information System for Disaster Risk Reduction (GGIS-DRR) a good idea?
 - We need to compare the costs & benefits
- What follows does not qualify as a proper costbenefit analysis—it is just a sketch
 - A proper CBA would need more info
- I am going to focus on the extreme end of the geohazard spectrum, partly because I think that's where most of the action is (more on this later)

VEI 8s are mainly bad for food

"...a Toba-sized eruption in a similar location [today] would, besides killing tens of millions of people throughout Southeast Asia, destroy at least one or two seasons of crops needed to feed some 2 billion people in one of the world's most densely populated regions. This alone would be a catastrophe unprecedented in history, and it could be compounded by much reduced harvests around the world. Compared to these food-related impacts, the damage to machinery, or the necessity to suspend commercial flights until the concentrations of ash in the upper troposphere returned to tolerable levels, would be a minor consideration." (Smil, 2008)

The value of a statistical life

Benefits

- Main benefits will be from lives saved—ignore buildings, etc. for now
- What's a life worth? There is a whole literature on this, but let's shortcut that and say that a credible number for the average human life is \$2.22 million
 - (More detail in the White Paper)
- And how many folk might die? I don't know, but every 1% of the global population is 70 million people, which is about \$155 trillion if they die
 - World GDP is something like \$70 to \$85 trillion

How many deaths?

- So how many people would die in a Toba-sized event? I don't know.
 - 3% to 5% of the world population died in the 1918 flu pandemic, and a Toba redux feels like it would be worse
 - Let's call it 10% (we can shrink this number later if it seems too high—it doesn't matter much)

Willingness to pay for death avoidance

- If Toba II has a 1/100,000 of occurring each year, and the occurrence is associated with a 10% probability of death, then everyone faces a 1/1,000,000 chance of dying per year
- Given a VSL of \$2.22 million, everyone should be willing to pay about \$2.22 to eliminate the risk completely (which is impossible anyway)
 - That adds up to \$15.5 billion / year (\$2.22 / person x 7 billion people)

We can't eliminate all Toba-related deaths

- Unlike asteroids, volcano monitoring can't lead to total avoidance
- I think the benefits will mainly accrue if we can get some warning and take precautionary measures to protect the food supply and prevent starvation:
 - Given months' warning, we could slaughter livestock, preserve feed and plan alternative transport networks
 - Given years' warning, we can conduct agricultural experiments to help us determine which crops to grow where in a new climate
 - Other stuff...

Willingness-to-pay for fewer deaths

- The willingness-to-pay (WTP) of \$15.5 billion / year from a few slides ago is only if the risk can be eliminated (i.e. we save 10% of the world population who otherwise would have died)
 - If we save 9% instead of 10%, WTP is \$14 billion / year
 - If we save 5% instead of 10%, WTP is \$7.75 billion / year
 - If we save 2% instead of 10%, WTP is \$3.1 billion / year
- Let's say we can save 5%--then the annual WTP is about \$8 billion

Costs

- How much would it cost to operate the GGIS-DRR? You probably know better than me. Here's how I guessed:
 - The USGS spends \$24.7 million monitoring volcano hazards
 - The USA is about 1/15 of the land surface of the Earth
 - Cavalierly, I assume a cost of \$370 million (\$24.7 million x 15 USAs)

Cost-benefit ratio

- If we can reduce the deaths by 5% of world population with enough warning, then the WTP is \$8 billion, which is more than 20 times larger than the guesstimated costs of \$370 million
 - Cost-benefit ratio > 20
 - That's a lot

Other things I was cavalier about

- VSLs could be a lot higher, depending on the method
- Omitted the value of reducing the likelihood of large-scale war
- "Rounding errors"
 - Cost of physical destruction
 - Cost of implementing emergency measures
- Tail risk: infinite?

Tail risk

 Imagine a lottery ticket which gives you different probabilities of winning prizes of different sizes

The red and the black

Prize number	Probability of prize	Red ticket prizes (prizes rise by 5x)		Black ticket prizes (prizes rise by 20x)	
		Prize	EV	Prize	EV
1	0.1	\$10	\$1	\$10	\$1
2	0.01	\$50	\$0.50	\$200	\$2
3	0.001	\$250	\$0.25	\$4 000	\$4
4	0.0001	\$1250	\$0.125	\$80 000	\$8
etc	0 0 0			•••	•••
		EV:	\$2	EV:	Infinite

Things we need to know

- Every number I used was a bit rough-andready, but the two things we really need to know more about are:
 - 1. What would be the effect on the food supply?
 - & how many would die if we do nothing?
 - 2. How much would GGIS-DRR cost?

References

Rose, W. I., and C. A. Chesner. "Dispersal of ash in the great Toba eruption, 75 ka." *Geology* 15, no. 10 (1987): 913-917.

Robock, Alan, Caspar M. Ammann, Luke Oman, Drew Shindell, Samuel Levis, and Georgiy Stenchikov. "Did the Toba volcanic eruption of ~ 74 ka BP produce widespread glaciation?." *Journal of Geophysical Research: Atmospheres* (1984–2012) 114, no. D10 (2009).

Smil, Vaclav. *Global catastrophes and trends: the next fifty years*. The MIT Press, 2008.

Smil, Vaclav. Harvesting the biosphere: The human impact. *Population and Development Review* 37(4) (2011): 613–636

Taubenberger, Jeffery K., and David M. Morens. "1918 Influenza: the mother of all pandemics." *Rev Biomed* 17 (2006): 69-79.

Trottenberg, Polly, and Robert S. Rivkin. "Guidance on Treatment of the Economic Value of a Statistical Life in U.S. Department of Transportation Analyses." Revised Departmental Guidance, 2013.

U.S. Geological Survey (USGS). Bureau Highlights, BH – 53. USGS, 2013.

Viscusi, W. Kip, and Joseph E. Aldy. "The value of a statistical life: a critical review of market estimates throughout the world." *Journal of risk and uncertainty* 27, no. 1 (2003): 5-76.

World Bank. Development Data Group, ed. World Development Indicators 2013. World Bank-free PDF, 2013.